Name:	Div:	Date:
1.5 Patterns	and Relationships	in Tables p. 25

We can make a table of values for a relation of an expression to a variable.

Step 1: select your expression

eg. 3n+4

Step 2: Draw an input and output table. Put your expression in the output title box.

Input	Output
Λ	3n+4

3n +4

 \mathcal{O}

3

6

Step 3:

Choose values for n (input numbers) and substitute these into the expression to get the output numbers.

If n =1 then
$$(3)(1) + 4$$

$$= \frac{3}{7} + 4$$

$$= \frac{3}{7} + 4$$

$$= 13$$
If n = 2 then $(3)(\frac{3}{7}) + 4$

$$= \frac{6}{7} + 4$$

$$= 12$$

$$12 + 4$$

$$= 10$$
Input Output

Math 7

n

1

2

3

4

You can also determine a relation based on the table of values.

Input	Output
1	7
2	9
3	11
4	13
5	15

- Let n represent any input number.
- When n is increased by 1, the output number increases by \checkmark .
- This means the expression for the output number contains 2n .
- The multiples of 2: 2,4,6,8, 10...
- These are ALL 5 <u>ess</u> than those in the table.
- So, the output is <u>2n+5</u>
 Therefore this table shows how <u>2n+5</u> relates to <u>n</u>.

Lets try together:

Input	Output
1	2
2	5
3	8
4	11
5	14

- When n is increased by $1_{,}$ the output number increases by $\underline{3}_{.}$
- This means the expression for the output number contains $\frac{3n}{2}$.
- The multiples of 3: 3, 6, 9, 12, 15 are all **more** than those in the table.
- So the output is : <u>3n-1</u>
 Therefore, this table shows how <u>3n-1</u> relates to n.

Homework: p.27 # 1-5

Name: _____

Div:_____

Date:_____