\qquad
\qquad
\qquad
1.5 Patterns and Relationships in Tables p. 25

We can make a table of values for a relation of an expression to a variable.
Step 1: select your expression

$$
\text { eg. } 3 n+4
$$

Step 2: Draw an input and output table. Put your expression in the output title box.

Input	Output
n	$3 n+4$

Step 3:
Choose values for n (input numbers) and substitute these into the expression to get the output numbers.

$$
\begin{aligned}
& \text { If } n=1 \text { then }(3)(1+)+4 \quad n=3 \quad 3(3)+4 \\
& =\frac{3}{7}+4 \\
& =9+4 \\
& =13 \\
& \text { If } n=2 \text { then }(3)\left(2 _\right)+4 \\
& n=4 \quad 3(4)+4 \\
& =12+4 \\
& =16
\end{aligned}
$$

Input	Output
n	3n+4
1	7
2	10
3	13
4	6

\qquad
\qquad
\qquad

You can also determine a relation based on the table of values.

Input	Output
1	7
2	9
3	11
4	13
5	15

- Let n represent any input number.
- When n is increased by 1 , the output number increases by \qquad _.
- This means the expression for the output number contains \qquad .
- The multiples of $2: 2,4,6,8,10$...
- These are ALL 5 less than those in the table.
- So, the output is $2 n+5$
- Therefore this table shows how \qquad relates to n.

Lets try together:

Input	Output
1	2
2	5
3	8
4	11
5	14

- When n is increased by _1, the output number increases by 3
- This means the expression for the output number contains $3 n$.
- The multiples of $3: 3,6,9,12,15$ are all \perp more than those in the table.
- So the output is : \qquad $3 n-1$
- Therefore, this table shows how relates to n .

Homework: p. 27 \# 1-5

Name:
Div:
Date:

